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ABSTRACT 
 
DC arc furnaces operate with a graphite cathode positioned above a molten slag and metal bath contained 
inside a furnace vessel.  The plasma arc, consisting of ionised particles at extremely high temperatures, forms a 
conducting path between the graphite cathode and the molten bath.  The power provided by the arc can be 
controlled by adjusting the arc length and the current.  
 
The high-intensity plasma arc emanates from a relatively small attachment area on the graphite electrode, and 
extends down to the surface of the molten bath.  Photographs of the arc are presented and compared to models 
of the shape of the arc.  These models provide a description of how the arc voltage varies as a function of arc 
length and current, for a given set of conditions in the furnace.  
 
The arc attachment zone, where the arc impinges on the molten slag surface, is highly turbulent and operates at 
a very high temperature.  This promotes very rapid melting, fast reaction kinetics, and effective mixing.  The 
impingement of the arc causes a crater-like depression in the surface of the slag.  This has a significant effect on 
the distribution of current in the molten slag, and the voltage drop across the slag.  The shape and size of this  
depression has been photographed, and the resulting information used in a model of the depression.  
 
Keywords 
Pyrometallurgy; extractive metallurgy; modelling 
 
 

INTRODUCTION 
 
The inherent persistency and intensity of a direct-current (DC) plasma arc offers some unique advantages for a 
number of smelting processes (Jones et al., 1993).  DC arc furnaces operate with a graphite cathode positioned 
above a molten slag and metal bath contained inside a furnace vessel.  The plasma arc, consisting of ionised 
particles at extremely high temperatures, forms a conducting path between the graphite cathode and the molten 
bath.  At temperatures above about 5000 K, the constituent molecules of the gas ionise into positively charged 
ions and negatively charged electrons, giving a neutral but very strongly conductive plasma.  This conducting 
material permits electrical current to pass from the furnace electrode through to the furnace bath and complete 
the circuit.  Flow of the plasma in the arc column is driven very strongly downward by electromagnetic forces, 
in a jet from the electrode towards the molten bath.  Much of the energy from the arc is delivered to a localised 
area directly beneath the arc, making this a very effective way of heating the process material. The power 
provided by the arc can be controlled by adjusting the arc length and the current.  
 
The open arc provides an additional degree of freedom to the supply of energy to the furnace, in that the 
resistivity of the slag is no longer solely responsible for the dissipation of energy to heat the molten slag.  This 
renders the energy supply nearly independent of slag composition, which may allow the slag chemistry to be 
optimized for the best recovery of valuable metals (instead of for the required electrical characteristics). 
 
The high-intensity plasma arc emanates from a relatively small attachment area on the graphite electrode, and 
extends down to the surface of the molten bath.  Photographs of the arc have been compared to models of its 
shape.  These models provide a description of how the arc voltage varies as a function of arc length and current, 
for a given set of conditions in the furnace. 
 
The arc attachment zone, where the arc impinges on the molten slag surface, is highly turbulent and operates at a 
very high temperature.  This promotes very rapid melting, fast reaction kinetics, and effective mixing.  The 
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impingement of the arc causes a crater-like depression in the surface of the slag.  This is believed to have a 
significant effect on the distribution of current and temperature in the molten slag, and the voltage drop across 
the slag.  The shape and size of this depression has been photographed, and the resulting information used in a 
model of the depression. 
 
 

STEADY-STATE ARCS 
 
The steady-state electrical behaviour of the DC arc has been well described previously (Bowman et al., 1969; 
Bowman, 1994), effectively summarizing a large quantity of data from DC electrical arcs in the 1 to 10 kA 
range.  This work provides a description of how the arc voltage varies as a function of arc length and current, for 
a given set of conditions in the furnace.  The model uses measured and extrapolated arc shapes, fitted to 
calculated plasma conductivities and estimated temperature profiles. 
 
The high-intensity plasma arc has been modelled by Bowman as emanating from a relatively small attachment 
area on the graphite electrode, and extends down to the surface of the molten bath.  This is shown schematically 
in Figure 1. 
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Fig.1  Schematic representation of a DC arc 
 
 
Equation (1) describes the shape of the conducting volume of the arc as a function of the distance from the 
cathode attachment spot.  The assumptions include an axi-symmetric arc and no interaction effects at the anode. 
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The arc radius, ra, varies with the distance, z,  from the cathode surface.  The radius, rk, of the cathode-spot 
attachment is determined by the value of the cathode-spot current density, estimated by Bowman to be around 
3.5 kA/cm2.  Figures 2 and 3 provide a comparison between actual and calculated arc shapes. 
 

 
 
Fig.2  4 kA arc in air, struck on a graphite block             Fig.3  Arc diameter versus length for a 4 kA arc 
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The arc shape function allows the arc voltage to be obtained by integration.  Several constants of Bowman’s 
along with a single variable parameter, the arc resistivity, appear in the arc voltage expression.  Variation of the 
arc resistivity then allows the model to be fitted to pilot or industrial plant data.  The integration required is:  
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where: 
ρa – arc resistivity, Ωcm 
jk – cathode-spot current density, kA/cm2 
rk – cathode-spot radius, cm 
ra – arc radius, cm 
I – current, A 
V – arc voltage, V 
z – axial distance from cathode, cm 
 
The final result of this integration is an expression relating the voltage of the arc to its length and current.  This 
is shown in Equation (4). 
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where: 
Va – arc voltage, V 
I – current, A 
ρa – arc resistivity, Ωcm 
rk – cathode-spot radius, cm 
L – arc length, cm 
 
Equation (4) is depicted graphically in Figure 4, which shows arc voltage as a function of arc length, for a range 
of different currents, at a given arc resistivity of 0.014 Ωcm. 
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Fig.4  Arc voltage as a function of arc length at different currents, for a given arc resistivity of 0.014 Ωcm 

 
 
Values for arc resistivity have been obtained experimentally on a number of pilot-plant furnace campaigns at 
Mintek.  These were obtained by measuring the voltage while keeping the current constant and varying the arc 
length.  The value used for the arc resistivity is that which best fits the experimental data.  The resistivity varies 
substantially according to the prevailing gas atmosphere in the furnace.  For example, the presence of zinc 
vapour makes the arc more conductive than carbon monoxide does. 
 
 

DYNAMIC ARCS 
 
Observations of real arcs (as illustrated in Figures 5 to 9) reveal erratic instabilities and chaotic motion.  
Sometimes, a helical pattern appears as a precursor to full instability.  There are also periods when the arc 
becomes diffuse and appears to be spread over the entire electrode tip.  Clearly, the time-average of this non-
steady behaviour has a significant bearing on the properties of the arcs. 
 
 

       
 
          Fig.5  Arc about to become unstable       Fig.6  ‘Pretzel-shaped’ arc in air on a graphite block 
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                          Fig.7                                               Fig.8                                                 Fig.9 
           Diffuse 7 kA arc onto slag             Violent splashing at 2 kA        Thicker arc with splashing at 8.1 kA 
                                                                                                                                 (Image L16354) 
 
Additional variables come into play when the arc is enclosed in a hot re-radiating furnace vessel, and when the 
arc is struck on a molten surface that deforms and splashes.  The changing shape of the depression in the liquid 
surface provides a rapidly changing geometrical arrangement that encourages the arc to move to new, shorter, 
more conductive paths.  In moving to a new position, the arc moves extremely rapidly across the tip of the 
electrode.  Figure 10 shows two successive images (one fiftieth of a second apart) in which the arc has moved 
almost from one side to the other of a 20 cm diameter electrode. 
 

    
Fig.10  Rapid arc movement in two successive images 1/50 s apart  (Images C0935 and C0936) 

 
 
Multiple ‘simultaneous’ arcs have been observed and recorded (see Figures 11 and 12), but it would need a 
higher speed camera to ascertain whether the arcs are truly simultaneous or whether they occurred sequentially 
during the exposure period, which is usually set to less than 1/50s because of the high intensity of the arc. 
 

    
Fig.11  Two images (a few minutes apart) showing two arcs ‘simultaneously’  (Images C0792 and C1225) 

 
 

 
Fig.12  Three ‘simultaneous’ arcs; total current 2 kA 
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ARC DEPRESSION 
 
The arc jet is seen, from previous measurements and modelling work (Bowman, 1982; Bowman, 1990), to be a 
high-velocity turbulent self-constricted jet.  The force generated by the impingement of such a jet on a dense 
deformable medium can be very significant, even at pilot-plant scale, and tends to create a cavity at such an 
interface.  The arc-attachment zone (AAZ) is therefore not treated as a flat surface but as a depressed cavity of 
paraboloidal shape, as suggested by Bowman (1994).  The determination of the dimensions of the AAZ 
depression is aided by an empirical correlation by Maecker (1955) that specifies the dependence of DC arc 
thrust on current flow. For sufficiently long arcs: 
 

27.1016.1 IT −×≈         (5) 
 
where: 
T – arc thrust, N 
I – arc current, A 
The volume of the displaced slag, in the paraboloid, may be expressed as:  
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where: 
V – volume of paraboloid, m3 
rA – radius of paraboloid depression, m 
hA – height or depth of paraboloid depression, m 
 
The buoyancy force generated by the absence of the slag from the cavity can be taken as the volume multiplied 
by the slag density and gravitational acceleration.  The buoyancy force may be equated to the thrust, in order to 
provide an expression relating hA to rA. 
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where: 
ρ - slag density, kg/m3 
g – standard gravitational acceleration, 9.81 m/s2 
 
One further constraint needs to be imposed on these two dimensions, in order to specify fully the size of the 
cavity, as a function of the arc current.  A relationship between hA and rA can either be specified a priori or fitted 
to experimental data.  It is understood that the depth cannot reasonably be expected to exceed the diameter of 
the depression in a stable cavity.  Images such as Figure 13 allow one to make a quantitative estimate of the 
diameter to depth ratio of the arc depression.  The images shown in Figure 14 illustrate the different types of 
depression that may be obtained under different circumstances. 
 
 

 
Fig.13  Clear image of arc depression at 2.9 kA  (Image F00878) 
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Fig.14  Arc depressions – punched hole and smeared depression  (Images C0833, FL025, FL028)  

 
 
According to Bowman (1994), depressions in liquids take about 10 to 100 ms to form.  Figure 15 shows two 
depressions existing simultaneously, where the arc has jumped to a new position before the previous depression 
has had a chance to die away. 
 

 
Fig.15  Two arc depressions existing simultaneously; 2.6 kA (Image L00683) 

 
 

ELECTRICAL MODEL OF MOLTEN BATH 
 
In smelting systems, the slag resistance causes a voltage drop across the molten bath.  If the slag is highly 
resistive, this voltage drop can be quite significant. 
 
It is important to have a relatively accurate prediction of the voltage across the slag before specifying the power 
supply of a new industrial furnace.  An incorrect specification can cause the failure of the process, and an over-
conservative specification that will guarantee operation over a wide range of conditions may unnecessarily add 
significantly to the purchase price of the transformer. 
 
The slag bath would be easy to model electrically if it was known to have a flat surface and a uniform 
conductivity, and if the potential distribution at the upper surface was well understood.  A small zone of 
constant high potential could be envisaged where the arc impinges on the surface, and a zero potential could be 
envisaged across the bottom surface of the bath where it is in contact with molten metal across the diameter of 
the furnace.  The Laplace equation could then be solved to obtain the potential distribution.  However, in reality, 
the impingement of the arc causes a depression in the surface of the slag.  This has to be taken into account in 
the model, as it can alter the geometrical current distribution quite significantly. 
 
 

ARCS AT INDUSTRIAL SCALE 
 
The specification of the power supply is one of the principal requirements when an industrial furnace is about to 
be built, and needs to be in place about twelve to eighteen months before the furnace is to be commissioned.  
The total power requirement of the furnace is derived from the desired throughput, and the experimentally-
determined specific energy requirement for the process.  The specification of the operating ranges for voltage 
and current requires a more detailed understanding of the scale-up of the furnace design.  In the past, there has 
been much speculation about the behaviour of high-current arcs, as some features such as thrust depend on the 
square of the current.  Industrial-scale arcs are very difficult (sometimes even dangerous) to photograph, and in 
many furnaces, the arc is never visible.  Fortunately, video images taken of the high-current arc in an industrial 
steelmaking furnace showed very similar behaviour to the pilot-scale arcs previously photographed.  Some 
sample images are shown in Figure 16. 
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Fig.16  Industrial steelmaking arc at 40 kA, 450 V (full power is at 70 kA, 550 V) 

 
 

ADVANCES IN HIGH-SPEED DIGITAL IMAGING 
 
The work presented here includes a number of images taken using a standard digital still camera as well as with 
a standard camcorder.  Welding filters were used to reduce the intensity of the light to manageable levels.  The 
video images were captured at a rate of 25 frames per second (at a resolution of 768 x 576 pixels), but by 
separating the odd and even scan lines of the interlaced PAL video image, the frame rate was effectively 
doubled to 50 frames per second.  Much higher filming speeds, with very little delay between successive frames, 
would be needed in order to capture some of the faster phenomena.  High performance digital video cameras 
may capture images at rates from 1 000 to 60 000 frames per second.  This would enable the imaging of 
phenomena that happen in a millisecond or less to be analysed in detail.  Short exposure times permit the digital 
video camera to capture extremely fast-moving objects on each frame of the video.  Classically, high-speed 
photography used to be performed with the aid of strobe lighting, which gave exposure times down to fractions 
of a millisecond.  With the modern electronics available in high-speed digital video cameras, exposure times of 
as low as 10 microseconds are available without the need for high-intensity strobes that would otherwise be 
required to freeze events that are evolving rapidly in time.  High-resolution images, up to 1024 x 1024 pixels in 
size, available in modern CMOS-design digital video cameras, provide sufficient detail for accurate image 
analysis and tracking of small-scale features from frame to frame. 
 
 

CONCLUSIONS 
 
A number of critical areas have been identified where an increased understanding is required.  The most 
important of these is the need to better understand the energy transfer in the furnace, closely followed by an 
ability to correctly specify the requirements of the electrical power supply.  Higher-speed digital video imaging 
would make a valuable contribution towards achieving these objectives. 
 
Dynamic mathematical modelling of arcs is required to better understand the transient phenomena, as the 
steady-state models do not provide the full picture.  Some preliminary work in this area at Mintek has already 
shown very promising results in using a deterministic model of the arc to predict behaviour that strongly 
emulates the real chaotic movements of arcs. 
 
The diameter to depth ratio of the arc depression has been determined from photographs, and this has been used 
for electrical bath modelling. 
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